Technique of Phacoemulsification in MICS

Farid Karimian M.D

Negah Eye Center

Labbafinejad Medical Center

October 2005

Introduction

Corneal incision history

* Changed from 10mm in ICCE decreased to 3.4-2.8mm

Definition

* MICS is cataract surgery through 1.5mm or less

Advantages of MICS

- * Reduction of induced astigmatism
- * More closed and safe system

Indication and Patients Selection

- Optimal elective indication: Lens Refractive Surgery
- Subluxated cataracts
- Post traumatic cataracts
- Zonular laxity
- Congenital cataracts
- Senile cataract

Anesthesia

- Topical by topical anesthesia
- Intracameral preservative- free 1% Lidocaine

MICS Surgical Instrument

- Both hands must be used
- 1- MICS micro blade:
 - * size 1.2 to 1.4 mm
 - * Trapezoidal incision: outer incision> internal
- 2- MICS capsulorrhexis forceps:
 - * Delicate forces through paracenthesis
 - * Triangular tip can puncture and grasp capsule
 - * Capsulorrhexis can be done with bent needle

3-MICS Prechoppers

- Counter chopping without zonular stress
- For all types of hardness
- 2 divisions made perpendicular to each other dividing nucleus into quadrants
- Divisions make a sharp decrease in U/S energy

4-MICS hydrodissector or irrigating fingernail

- Nucleus fragments manipulation + AC irrigation
- Further division of nucleus fragments
- Irrigating fluid port under the tip with large pore
 (1.0mm) Pushes posterior capsule back

Flow rate (or free irrigation flow): 50-70 cc/min

#5- MICS irrigating chopper

- * For chopping medium to hard cataracts
- * Irrigation also occurs through tip undersurface

•6- MICS aspiration hand piece

- * Bullet shaped tip is for aspiration
- * Aspiration port diameter 0.3 mm
- * Design works to maintain the fluid balance in A/C

7-Intraocular manipulator

Multifunctional:

- * Iridolenticular synechiolysis
- * IOL manipulation
- * Intraocular manipulations
- Tip is blunt, body blocks outlet preventing outflow of fluid or viscoelastic

8- MICS Scissors

- Used for cutting synechia, or fibrosed capsules, membranes, small iridotomies
- Shaft gauge 23 (0.6mm) fits to small paracenthesis

Incisions

- 2 Trapezoidal incisions of 1.2-1.4 mm in size
- Distance of incisions: 90° usually at 10 and 2
 O'clock
- Capsulorrhexis with forceps or bent needle
- + Hydrodissection:
 - * Gentle
 - * Repeated fluid egress to reduce IOP

Pre- Chopping (Counter Chopping Technique)

- After capsulorrhexis:
 - * Manual cut division of nucleus
 - * No groove prior to prechopping
- Dispersive or cohesive viscoelastic is injected
- Technique applicable to all cataract density grades
- Nucleus manipulator round tip stabilizes nucleus
- Prechopper, nucleus manipulator and hardest nucleus point must be aligned
- First nucleus divided in 2 them into 4 quadrants

Low Ultra sound (LUS)- MICS surgical steps

- Phaco with low U/S can be performed
- Pre- chopped nucleus fragments is emulsified and removed
- Epinuclear rim is aspirated and removed with low U/S
- Cortical clean up using bimanual irrigationaspiration

Comparison of LUS- MICS with Conventional Phaco

- A/C chamber pressure is higher in MICS
- ◆ Mean vacuum in MICS is higher

 → essential for MICS
- Lower percent of U/S power used in MICS compared to conventional
- Time in MICS in longer
- MICS surgery had lower percent of ECC loss
- Post operative flare and reaction is much lower in MICS

Advantages of MICS

- Fast visual recovery and improved visual outcomes
- Decrease in postop astigmatism
- Reduction in the anatomical healing time
- Lower rate of complications
- # IOL insertion through microincision
- Laser power can be used in MICS
- Reduction of postoperative inflammatory reaction
- Reduction of endothelial cell damage

Aspiration Parameters in Bimanual phaco (20-gouge phaco tip)

A- Case of ordinary hardness

	AFR MI/min	Max.Asp. Pressure mmHg	Bottle Height cm
1- Trenching	10-20	30-60	75
2-Vertical chop	24	160-180	75
3- Free nuclear fragments	22	140	75-85

B- Case of extremely hardness

	AFR	Max.Asp. Pressure	Bottle Height
	MI/min	mmHg	cm
1- Crater	10-20	30-60	<i>7</i> 5
2- Vertical chop	25	250	<i>7</i> 5
3- Free nuclear	22	140	80-90
fragments			