بسم الله الرحمن الرحيم

Course on "Wavefront Customized Surgery"

Wavefront Customized Corneal Surgery (Present and Future)

Farid Karimian M.D.

Labbafinejad Medical Center Negah Eye Center

What is Wavefront?

Wavefronts:

Are continuous iso-phase surfaces

Are perpendicular to the directions of

wave propagation

Optical waves are 3-dimensional but wavefronts are surface

Wavefront Aberration

- Deviation of the actual wavefront from an ideal reference wavefront
- deal eye (aberration –free): ideal exiting wavefront is a flat plane
- Real eye (with optical aberrations):
 - * Exiting wavefront deviates from plane wave
 - * A plane wave entering the eye

aberrated pattern on the retina

Principle:

 Reversing direction and propagation of wavefront in the eye can show how it can be translated into ablation

Aberration

Difference that exists between the ideal image expected to be seen in the perfect optical system and what actually achieved

Zernike polynomials are:

- * Mathematical models of optic description
- * Defined on the circular shape basis (e.g cornea, pupil)
- * Deformation is sum of polynomials for all types of deformation

Aberration Groups

- 1) Chromatic:
- Difference in distribution of incident polychromatic radiation throughout a medium
- Depends on light wave-length
- Normal eye chromatic aberration: 0.93 D
- Not correctable
- 2) Monochromatic:
- Aberration related to a specific wave-length

Zernike's Polynomials

- Zero order (no order) = axial symmetry, flat wavefront
- First order = linear aberration, tilting around a horizontal (x) or vertical axis (y)
- Second order = focus shift, spherical defocus or astigmatism
- Third order = corresponding to coma, triangular astigmatism
- Fourth order = spherical aberration, complex patterns

Common

Fifth-10th order = Irregular aberrations, important when pupil is wide dilated.

Main Aberration Types

- Spherical refractive error (defocus): simple form, myopic or hyperopic ametropia
- Astigmatism: different meridians focus on different planes
- Spherical aberration:
 - * Marginal rays focus before the Para-axial rays do
 - * Normal eye:is about 0.50D

Coma

- Extra-axial mono-chromatic aberration
- Incident radiation forms an angle with optical axis
- Retinal focal point (RFP) is like comet
- Astigmatism from oblique beams (or incidence):
 - extra-axial aberration,
 light source is not coaxial

Distortion:- induces variable magnification of optical image in various zones of the image

Mathematical Properties of Zernike Polynomials

- 1- Completeness: it can represent any aberration over a circular aperture
- 2- Orthogonality: Zernike terms can be manipulated and recombined
- 3- Normality: Zernike terms adjusted so that they contribute equally to root mean square (RMS)

Fourier Transform

- More conveniently represent aberrations as superimposition of sinusoidal gratings of various spatial frequencies, orientations, and phases
- Best describe linear aberrations (e.g scar) which Zernike is unable

Equation for Customized Corneal Ablation Depth

$$A(x,y) \times (n_{cornea} - n_{air}) = C - W(x,y)$$

- n corneal index of refraction
- n _{air} = refractive index of air
- C= smallest constant depth needed to keep A (x,y) from becoming negative
- A(x,y) = can not take on a negative value, because ablation can not add tissue to the cornea
- Ablation of 1 micron reduces wavefront retardation by n cornea - n μm

Technology Requirements for Customized Ablation

Technology Requirements for Customized Corneal Ablation

- Accurate wavefront measurement device
- Precise and robust eye tracking
- Scanning Spot Laser Delivery
- Wavefront- Laser interface

Accurate Wavefront Measurement Devices

Wavefront aberration information is collected and measured by four different principles

- 1. Outgoing refractive aberrometry
- 2. Retinal imaging aberrametry (Tscherning)
- 3. Incoming Adjustable Refractometry (Scheiner)
- 4. Double pass Aberrametry (Slit Skiascopy)

1- Outgoing Refractive Aberrometry

Shack- Hartman wavefront sensor

Reflection from fovea

Optical structures of the eye

Array of lenslets to a small spot each segment of focused wavefront

CCD detection array ocular aberration

1- Outgoing Refractive Aberrometry

Limitations:

- Multiple scattering from subfoveal choroidal structures
- Crossover of focused spots in highly aberrated eyes
- Does not take quality of individual spots formed by lenslet array

Shack-Hartman Devices

- Alcon LADARWave: 170 spots within 6.5 mm pupil
- VISX Wave Scan: 180 spots within 6 mm pupil
- Schwind aberrometer
- Bausch & Lomb Zywave: 70 spots within 6mm pupil
- Meditec WASCA: 800 spots within 7mm pupil

Note: Approximately 200 spots within 7 mm pupil is adequate

2- Retinal Imaging Aberrometry

- Tscherning and Ray Tracing: subjective measurement of monochromatic aberration
- Seiler used a spherical lens to project 1 mm grid pattern onto retina
- Principle: 13x13 spot grid (168 spot)

Projection through 10mm cornea

100 spots within 7mm pupil

Paraxial aperture system

2- Retinal Imaging Aberrometry (cont)

- Limitation: Use of an idealized eye model (Gullstrand model I)
- Ray tracing: Nearly 100 sequential spots
 traced within 12ms within

 7mm pupillary area
- Examples: Wavelight analyzer
 Tracey Ray Tracing

3- Ingoing Adjustable Refractometry (Scheiner)

(Spatially-Resolved Refractometer:SRR)

 Subjective redirection of 37 peripheral beams of incoming light toward central target

Limitation: time consuming procedure Example: Interwave SRR

4- Double Pass Aberrometry (Slit Skiascopy)

- Considers passage of light into the eye + reflection of light out of the eye
- Rapid scanning a slit of light along a specific axis (Skiascopy)

Captured fundus reflection: parallel photodetectors

360 meridia- 4 spot on each meridian=1440 data point

4- Double pass aberrometry (Slit Skiascopy) (Cont)

Limitation:

- Small amount of collected axial information
- Sequential nature of capture

Example: Nidek OPD-scan

II-Scanning Spot Laser Delivery

1. Scanning spot size Huang et al:

- Treating up to 4th order aberrations requires a spot beam diameter of 1 mm or less
- Up to 6th order aberrations correction: requires 0.6mm spot size

Laser Device	Spot size (mm)	Scanning Rate (HZ)
LADARVision	8.0	60
Lasersight	0.6	200
Wavelight	0.95	200
Schwind	1.0	200
Zeiss Meditec (MEL 80)	0.7	250
B & L Technolas 217Z	2+0.8	100
VISX STAR S4	2+1	>10
Nidek EC-5000 CXII	2+0.8	200

2- Scanning Spot Shape (Profile)

- Guassian Beam profile: LADARVision, Laser sight, Wavelight, Schwind, Zeiss Meditec
- Truncated Guassian beam: Bausch & Lomb Technolas 217
- Top hat beam profile: VISX STAR S4
- The most desirable profile is Guassian beam:

- * very uniform overlap
- * Avoids abrupt edges

3. Scanning Spot Rate

Majority of small spot Gaussian profile lasers:

200Hz

Alcon LADARVision: 60Hz

volume ablated per shot ablation time Importance of rate:

* Slow rate

stromal dehydration

* Higher rate > eye tracking ____ misplaced beams

misplaced

ablations

Advantages of Scanning Spot Delivery

 Reduction of steep central Island formation in respect to broad beam

- Increased surface smoothness due to perfect overlap
- Reduction in Stress waves: in broad beam lasers:
 - * 40-80 atmospheres on cornea
 - * Pressure focus 7-8mm posterior to endothelium

III- Fast Eye Tracking

Fixation- related eye movements:

Frequent saccadic eye movements

- 1- random
- 2-~5/second
- 3- rapid distance traversed

III -Fast Eye Tracking... cont

Tracking Definitions

- 1. Sampling rate: Number of measuring the eye's location 60-4000Hz
- 2. Latency: * Time required to determine eye's location required response calculation

laser tracker mirror move

- Videocamera-based tracking 16.67ms (NTSC)to 20mS(PAL)
- Total processing delay: 33ms (NTSC) to 40ms (PAL)

3-Eye Tracker Types

Method of eye tracking	Laser radar	Charged-coupled device (CCD)/infrared
Laser system	LADARVision	B&L Technololas (120) Nidek (60 to 200) VISX, Laser sight (60) Wavelight, Zeiss Meditec (250)
Transmitted signal	905 nm diode	None
Detection frequency	4000 Hz	60,120,250 Hz
Response time	3.0 ms rise time	50ms rise time

4- Closed vs Open Loop Tracking

comparison with old image

single error calculation \implies mirror movement

Closed loop (laser-radar) system → 905 nm laser signal → 4 (pupil) contrast boundaries

variable sized spots

Immediate readjustment

IV-LASER- Wavefront Interface

First step: Wavefront Capture & Comparion:

- Capturing the most accurate and reproducible wavefront
- Multiple captures comparisons
 generation of a composite map
- ♣ In Alcon LADARWave aberrometer 5 measurements

Second Step Conversion to Ablation Profile:

- Ablation profile is fundamentally inverse of wavefront error map
- **Goal:** Correction of refractive error and higher-order aberrations
- Pupil diameter at least 0.5mm larger than scotopic
- **Limbal marking for cyclotorsion** detection
- Wavefront measurement + corneal curvature + biomechanics ablation profile complex

Ablation Profile

Wavefront

Final Step: Dynamic Registration

Ablation profile | laser shot pattern

customized laser correction

Alignment with center of undilated pupil

Dynamic registration engagement of eye

tracker

Dynamic Registration: Final Step (Cont)

First reticle limbus ring alignment (X,Y)

Second reticle cyclotorsion alignment with limbal markings

B&L Technolas 217z: iris detail used for registration and tracking

Process of Registration

- Most important technology requirement for customized ablation of HOA
- Required criteria for ideal registration and tracking:

Lateral Decentration Torsional Alignment

<50 μ 1 degree for ideal wavefront ablation

<200µ 4 degrees: for achieving results consistent

with best 10% of untreated normal

<400µ 10 degrees: only duplicate preop image quality

What can be the Future of Wavefront Customized Corneal Surgery?

Future of wavefront diagnostics

- Improving accurate measurement and diagnosis above current devices (6-10th Zernike order)
- Measuring corneal wavefront aberration and surface changes
- Measurement of aberrations by non-Zernike (Fourier?) algorithms

The Future of Customization

- "Zonal reconstruction": providing accurate representation of the underlying data set, minimize noise, take multiple measurements
- More sophisticated clinical aberrometer greater density of lenslets
 multiple sampling over time
 adaptive optic capabilities

Future of Customized Corneal Ablation

LASIK vs surface ablation

- Each microkeratome induces specific "flap only" aberration (flap size, thickness)
- Considering "flap aberrations" in total treatment calculations

Future of Customized Corneal Ablation ... cont.

Surface Ablations:

- Show promising results with use of
- immunomodulating agents
- Better control of cellular and biochemical reactions
- Introduction of new drugs to better regulate wound healing and refractive outcome
- □ Gene therapy for better control of post laser keratocyte activation and wound healing

Multifocal Ablation

- Presbyopia: Customized multifocal ablation
- Aberrations may be induced when creating multifocality
- Potential loss of contrast sensitivity and quality of visual function
- Future results will be improved:
 - * Wavefront mapping, sophisticated eye trackers corneal registration
 - * Preoperative simulation of postop condition

Laser Delivery Refinements

- Correction of higher orders of aberration needs smaller spot delivery
- * >5th order requires 0.6-0.8mm spot size
- Smaller spot size needs faster and better eye trackers
- Smaller ablation depth per pulse provides ideal correction profile for higher orders

Laser Delivery Refinements

- Katana solid state
 excimer laser: very
 small spot (0.2
 mm), rapid laser
 delivery rate, rapid
 eye tracker (even
 rotational)
- Accurate
 registration: iris
 recognition by B&L
 Technolas, VISX

Environmental- Interface Corneal Ablation Control

- Environmental factors: temperature, humidity, physical variables of cornea
- Operating suite control: already done
- Microenvironment (around cornea) control: essential for outcome predictability
- Online pachy- and topography for intraoperative control: more precise

Adaptive Corneal Correction

- Intraoperative measurement of refractive and ablation profile of the eye
- Not possible with LASIK or surface ablation
- Adaptive LTK: real-time intraoperative measurement of wavefront errors
- Developing threshold for certain refractive and wavefront outcome: stop treatment when ablation corrected and goal reached

Customized Corneal Ablation

- Customized LASIK & PRK will dominate in next few years
- Speedy recovery, good quality of vision satisfactory outcome
- Disadvantage of conventional refractive surgery in some patients:
 - * Increase in HOA
 - * Reduction in visual quality

Customized Corneal Ablation

Advantage of customized corneal ablation:

- Reduction of HOA
- Sharper contrast
- Superior visual outcomes

Customized corneal procedures seems to remain an option for next two decades

Wavefront Customized Visual Correction

Ocular wavefront sensing:

- Will be increasingly employed
- Will become routine in vision assessment

Wavefront customization is employed to optimize any refractive surgery procedure

Wavefront Customized Visual Correction (cont)

Future wavefront customized refractive procedures

- Implantation of optimized IOL's e.g
 Technis aspheric lens
- Customized IOL's preinsersion, customized phakic IOL's

Wavefront Customized Visual Correction (cont)

Customized IOL's post-insersion:

- Calhoun laser adjustable lens
- Customized adaptive correction
- Accommodating IOL customization
- Capsular filling customization
- Customized corneal inlay/ on-lays
- Photophaco reduction and modulation

Conclusion

Wavefront measurement devices and consequently wavefront correction procedures are still in process of evolution

Achievement of "supervision": with advancement in current procedures will not be a dream in near future

Thank You for Your Kind Attention!!

