#### 2<sup>nd</sup> Annual Meeting of Ophthalmic Research Center

#### "CUSTOMIZATION"

or

## WAVEFRONT-GUIDED VISUAL CORRECTION

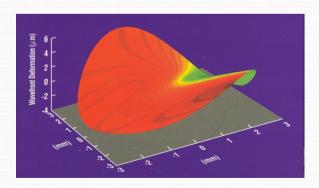
Farid Karimian M.D

Associate Professor of Ophthalmology
Labbafinejad Medical Center
June 2007



#### Wavefront Correction Strategy

I-NORMALIZATION: Correction based on average population wavefront data


2- CUSTOMIZATION: Correction based on individual wavefront measurements to guide higher order abberations on a "Customized" basis





#### Technology Requirements for Customized Corneal Ablation

- Accurate wavefront measurement device
- Precise and robust eye tracking
- Scanning Spot Laser Delivery
- Wavefront- Laser interface







#### **Accurate Wavefront Measurement Devices**

### Wavefront aberration information is collected and measured by four different principles

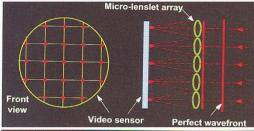
- 1. Outgoing refractive aberrometry
- 2. Retinal imaging aberrometry (Tscherning)
- 3. Incoming Adjustable Refractometry (Scheiner)
- 4. Double Pass Aberrometry (Slit Skiascopy)



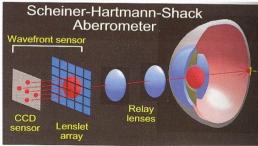


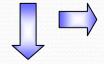
#### 1- Outgoing Refractive Aberrometry

Shack- Hartman wavefront sensor Low energy laser


Reflection from fovea

**Optical structures of the eye** 


Array of lenslets that small spot each segment of focused wavefront [


**CCD** detection array

ocular aberration













#### 1- Outgoing Refractive Aberrometry

#### **Limitations:**

- Multiple scattering from subfoveal Choroidal structures
- Crossover of focused spots in highly aberrated eyes
- Does not take quality of individual spots formed by lenslet array





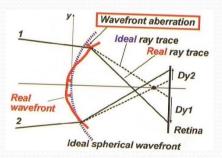
#### Shack-Hartman Devices

- **#Alcon LADARWave: 170 spots within 6.5 mm pupil**
- VISX Wave Scan: 180 spots within 6 mm pupil
- Schwind aberrometer
- Bausch & Lomb Zywave: 70 spots within 6mm pupil
- Meditec WASCA: 800 spots within 7mm pupil

**Note:** Approximately 200 spots within 7 mm pupil is adequate

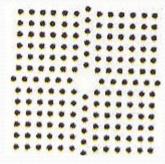


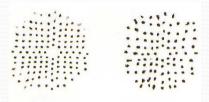



#### 2- Retinal Imaging Aberrometry

- **Tscherning and Ray Tracing: subjective measurement of monochromatic aberration**
- Seiler used a spherical lens to project 1 mm grid pattern onto retina
- Principle: 13x13 spot grid (168 spot)

Projection through 10mm cornea


100 spots within 7mm pupil


Paraxial aperture system









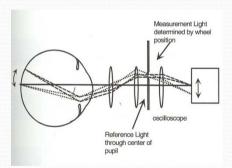






## 2- Retinal Imaging Aberrometry (cont)

- Limitation: Use of an idealized eye model (Gullstrand model I)
- Ray tracing: Nearly 100 sequential spots traced within 12ms within 7mm pupillary area
- Examples: Wavelight analyzer
  Tracey Ray Tracing






## 3- Ingoing Adjustable Refractometry (Scheiner)

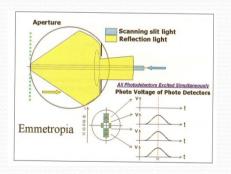
(Spatially-Resolved Refractometer:SRR)

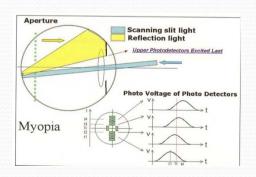
 Subjective redirection of 37 peripheral beams of incoming light toward central target

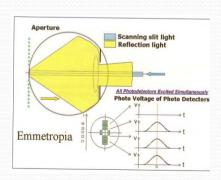


**Example:** Interwave SRR







#### 4- Double Pass Aberrometry (Slit Skiascopy)


- Considers passage of light into the eye + reflection of light out of the eye
- Rapid scanning a slit of light along a specific axis (Skiascopy)

Captured fundus reflection: parallel photodetectors

◆ 360 meridia- 4 spot on each meridian=1440 data point











## 4- Double pass aberrometry (Slit Skiascopy) (Cont)

#### Limitation:

- Small amount of collected axial information
- Sequential nature of capture

**Example:** Nidek OPD-scan





## Il-Scanning Spot Laser Delivery

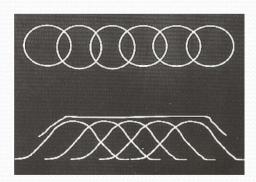
#### 1. Scanning spot size

Huang et al:

- Treating up to 4<sup>th</sup> order aberrations requires a spot beam diameter of 1 mm or less
- Up to 6<sup>th</sup> order aberrations correction: requires 0.6mm spot size






| Laser Device           | Spot size (mm) | Scanning<br>Rate (HZ) |
|------------------------|----------------|-----------------------|
| LADARVision            | 0.8            | 60                    |
| Lasersight             | 0.6            | 200                   |
| Wavelight Allegreto    | 0.95           | 200-400               |
| Schwind                | 1.0            | 200                   |
| Zeiss Meditec (MEL 80) | 0.7            | 250                   |
| B & L Technolas 217Z   | 2+0.8          | 100-200               |
| VISX STAR S4           | 2+1            | >10                   |
| Nidek EC-5000 CXIII    | 2+0.8          | 200                   |





#### 2- Scanning Spot Shape (Profile)

- **Guassian Beam profile:** LADARVision, Laser sight, Wavelight, Schwind, Zeiss Meditec
- Truncated Guassian beam: Bausch & Lomb Technolas 217
- **Top Hat Beam profile: VISX STAR S4**
- **The most desirable profile is Guassian beam:**



- \* very uniform overlap
- \* Avoids abrupt edges





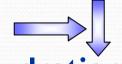
#### 3. Scanning Spot Rate

Majority of small spot Gaussian profile lasers:

200Hz

**# Alcon LADARVision: 60Hz** 

**∆volume ablated per shot** 


**mportance of rate:** 

\* Slow rate

\* Higher rate > eye cricking

beams

ablation time



stromal dehydration

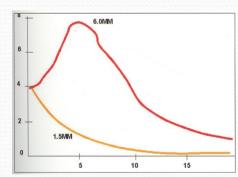
misplaced












#### Advantages of Scanning Spot Delivery

 Reduction of steep central Island formation in respect to broad beam



- Increased surface smoothness due to perfect overlap
- Reduction in Stress waves: in broad beam lasers:
  - \* 40-80 atmospheres on cornea
  - \* Pressure focus 7-8mm posterior to endothelium







#### III- Fast Eye Tracking

#### Fixation- related eye movements:

Frequent saccadic eye movements

- 1- random
- 2-~5/second
- 3- rapid distance traversed





### III -Fast Eye Tracking...

#### **cont Tracking Definitions**

- 1. Sampling rate: Number of measuring the eye's location 60-4000Hz
- 2. Latency: \* Time required to determine eye's location required response calculation

laser tracker mirror move

- Videocamera-based tracking 16.67ms (NTSC)to 20mS(PAL)
- Total processing delay: 33ms (NTSC) to 40ms (PAL)





### 3-Eye Tracker Types

| Method of eye tracking | Laser radar      | Charged-coupled device (CCD)/infrared                                                         |
|------------------------|------------------|-----------------------------------------------------------------------------------------------|
| Laser system           | LADARVision      | B&L Technololas (120) Nidek (60 to 200) VISX, Laser sight (60) Wavelight, Zeiss Meditec (250) |
| Transmitted signal     | 905 nm diode     | None                                                                                          |
| Detection frequency    | 4000 Hz          | 60,120,250 Hz                                                                                 |
| Response time          | 3.0 ms rise time | 50ms rise time                                                                                |





#### 4- Closed vs Open Loop Tracking



single error calculation  $\implies$  mirror movement

4 (pupil) trast boundaries

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

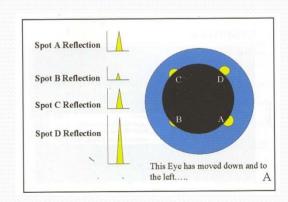
\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*


\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast boundaries\*\*

\*\*Closed loop (laser-radar) system \*\* 205 nm laser signal trast bou

variable sized spots

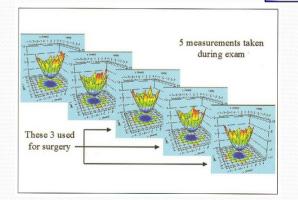
Immediate readjustment







### V - LASER-Wavefront Interface


#### First step: Wavefront Capture & Comparion:

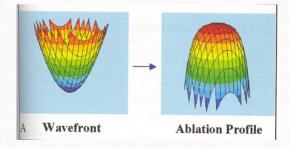
- Capturing the most accurate and reproducible wavefront
- generation of a composite map
- ◆ In Alcon LADARWave aberrometer 

  → 5 measurements

Three closest in agreement

Composite profile








Second Step

## Conversion to Ablation Profile:

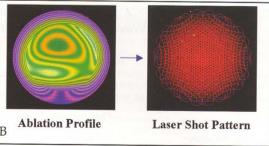
- Ablation profile is fundamentally inverse of wavefront error map
- Goal: Correction of refractive error and higher-order aberrations
- Pupil diameter at least 0.5mmlarger than scotopic
- Limbal marking for cyclotorsion detection
- Wavefront measurement + corneal curvature +
   biomechanics blation profile complex







#### Final Step: Dynamic Registration


\*Ablation profile aser shot pattern

**Customized Laser Correction** 

Alignment with Center of undilated pupil

**Dynamic registration** engagement of eye

tracker







### Dynamic Registration: Final Step (Cont)

**#First reticle** 



Second reticle limbal markings cyclotorsion alignment with



**B&L Technolas 217z: iris detail used for registration and tracking** 





#### Process of Registration

- Most important technology requirement for customized ablation of HOA
- Required criteria for ideal registration and tracking:

Lateral Decentration Torsional Alignment

<50  $\mu$  1 degree for ideal wavefront ablation

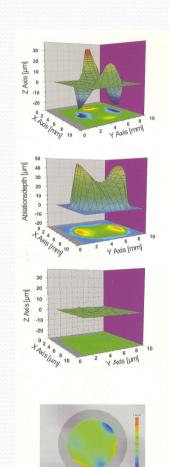
**<200**µ 4 degrees: for achieving results consistent

with best 10% of untreated normal

<400 $\mu$  10 degrees: only duplicate preop imagequality






# What can be the Future of Wavefront Customized Corneal Surgery?





#### Future of wavefront diagnostics

- Improving accurate measurement and diagnosis above current devices (6-10<sup>th</sup> Zernike order)
- Measuring Corneal Wavefront aberration and surface changes
- Measurement of aberrations by non-Zernike (Fourier?) algorithms







## The Future of Customization

- \*"Zonal reconstruction": providing accurate representation of the underlying data set, minimize noise, take multiple measurements
- More sophisticated clinical aberrometer greater density of lenslets multiple sampling over time adaptive optic capabilities





## Future of Customized Corneal Ablation

#### LASIK vs Surface Ablation

 Each microkeratome induces specific "flap only" aberration

(flap size, thickness)

 Considering "flap aberrations" in total treatment calculations





## Future of Customized Corneal Ablation ... cont.

#### Surface Ablations:

- Show promising results with use of
- immunomodulating agents
- Better control of cellular and biochemical reactions
- Introduction of new drugs to better regulate wound healing and Refractive Outcome
- Gene therapy for better control of post laser keratocyte activation and wound healing





#### Multifocal Ablation

- Presbyopia: Customized multifocal ablation
- Aberrations may be induced when creating multifocality
- Potential loss of contrast sensitivity and quality of visual function
- Future results will be improved:
  - \* Wavefront mapping, sophisticated eye trackers corneal registration
  - \* Preoperative simulation of postop condition





### Laser Delivery Refinements

- Correction of higher orders of aberration needs smaller spot delivery
- **+>5th order** ⇒equires 0.6-0.8mm spot size
- **Smaller spot size needs faster and better eye** trackers
- Smaller ablation depth per pulse provides ideal correction profile for higher orders





### Laser Delivery Refinements

- Katana solid state
   excimer laser: very small
   spot (0.2 mm), rapid
   laser delivery rate, rapid
   eye tracker (even
   rotational)
- Accurate registration: iris recognition by B&L Technolas, VISX







## Environmental- Interface Corneal Ablation Control

- Environmental factors: temperature, humidity, physical variables of cornea
- Operating suite control: already done
- Microenvironment (around cornea) control: essential for outcome predictability
- Online pachy- and topography for intraoperative control: more precise





### Adaptive Corneal

- Intraoperative measurement of refractive and ablation profile of the eye
- Not possible with LASIK or surface ablation
- **\*Adaptive LTK:** real-time intraoperative measurement of wavefront errors
- Developing threshold for certain refractive and Wavefront outcome: stop treatment when ablation corrected and goal reached





## Customized Corneal Ablation

- Customized LASIK & PRK will dominate in next few years
- Speedy recovery, good quality of vision satisfactory outcome
- **Disadvantage** of conventional refractive surgery in some patients:
  - \* Increase in HOA
  - \* Reduction in visual quality





#### **Customized Corneal Ablation**

#### Advantage of customized corneal ablation:

- Reduction of HOA
- Sharper contrast
- Superior visual outcomes

## Customized corneal procedures seems to remain an option for next two decades





#### Wavefront Customized Visual Correction

#### Ocular wavefront sensing:

- Will be increasingly employed
- Will become routine in vision assessment

Wavefront customization is employed to optimize any Refractive Surgery procedure





## Wavefront Customized Visual Correction (cont)

#### Future wavefront customized refractive procedures

- Implantation of optimized IOL's e.g
   Tecnis aspheric lens
- Customized IOL's preinsersion, customized phakic IOL's





## Wavefront Customized Visual Correction (cont)

#### Customized IOL's post-insersion:

- Calhoun laser adjustable lens
- Customized adaptive correction
- Accommodating IOL customization
- Capsular filling customization
- Customized corneal inlay/ on-lays
- Photophaco reduction and modulation





#### Conclusion

- Wavefront measurement devices and consequently wavefront correction procedures are still in process of evolution
- Achievement of "supervision": with advancement in current procedures will not be a dream in near future





## Thank You for Your Kind Attention!!



